top of page

57. Mechanically triggered bright chemiluminescence from polymers by exploiting a synergy between masked 2-furylcarbinol mechanophores and 1,2-dioxetane chemiluminophores

Peng Liu,‡ Yu-Ling Tseng,‡ Liang Ge, Tian Zeng, Doron Shabat, and Maxwell J. Robb (‡contributed equally)

J. Am. Chem. Soc. 2024, 146, 22151–22156

56. Multimechanophore polymers for mechanically triggered small molecule release with ultrahigh payload capacity

Tian Zeng, Liam A. Ordner, Peng Liu, and Maxwell J. Robb

J. Am. Chem. Soc. 2024, 146, 95–100

55. Incorporation of a self-immolative spacer enables mechanically triggered dual payload release

Yu-Ling Tseng, Tian Zeng, and Maxwell J. Robb

Chem. Sci. 2024, 15, 1472–1479

54. Remote control of mechanochemical reactions under physiological conditions using biocompatible focused ultrasound

Yuxing Yao,‡ Molly E. McFadden,‡ Stella M. Luo, Ross W. Barber, Elin Kang, Avinoam Bar-Zion, Cameron A. B. Smith, Zhiyang Jin, Mark Legendre, Bill Ling, Dina Malounda, Andrea Torres, Tiba Hamza, Chelsea E. R. Edwards, Mikhail G. Shapiro, and Maxwell J. Robb (‡contributed equally)

Proc. Natl. Acad. Sci. U.S.A. 2023, 120, e2309822120

53. Anomalous photochromism and mechanochromism of a linear naphthopyran enabled by a polarizing dialkylamine substituent

Yan Sun, Molly E. McFadden, Skylar K. Osler, Ross W. Barber, and Maxwell J. Robb

Chem. Sci. 2023, 14, 10494–10499

52. Naphthopyran molecular switches and their emergent mechanochemical reactivity

Molly E. McFadden, Ross W. Barber, Anna C. Overholts, and Maxwell J. Robb

Chem. Sci. 2023, 14, 10041–10067

51. Mechanochemical reactivity of a multimodal 2H-bis-naphthopyran mechanophore

Skylar K. Osler, Molly E. McFadden, Tian Zeng, and Maxwell J. Robb

Polym. Chem. 2023, 14, 2717–2723

50. Validation of an accurate and expedient initial rates method for characterizing mechanophore reactivity

Molly E. McFadden, Anna C. Overholts, Skylar K. Osler, and Maxwell J. Robb

ACS Macro Lett. 2023, 12, 440–445

49. Mechanically gated formation of donor–acceptor Stenhouse adducts enabling mechanochemical multicolour soft lithography

Anna C. Overholts, Wendy Granados Razo, and Maxwell J. Robb

Nat. Chem. 2023, 15, 332–338

48. Competitive activation experiments reveal significantly different mechanochemical reactivity of furan–maleimide and anthracene–maleimide mechanophores

Stella M. Luo, Ross W. Barber, Anna C. Overholts, and Maxwell J. Robb

ACS Polym. Au 2023, 3, 202–208

47. Mechanical force enables an anomalous dual ring-opening reaction of naphthodipyran

Molly E. McFadden, Skylar K. Osler, Yan Sun, and Maxwell J. Robb

J. Am. Chem. Soc. 2022, 144, 22391–22396

46. Incorporation of a tethered alcohol enables efficient mechanically triggered release in aprotic environments

Corey C. Husic, Xiaoran Hu, and Maxwell J. Robb

ACS Macro Lett. 2022, 11, 948–953

45. Examining the impact of relative mechanophore activity on the selectivity of ultrasound-induced mechanochemical chain scission

Anna C. Overholts and Maxwell J. Robb

ACS Macro Lett. 2022, 11, 733–738

44. A Mechanochemical two for one: Mechanical activation of norborn-2-en-7-one releases carbon monoxide and switches on aggregation-induced emission (invited highlight)

Ross W. Barber and Maxwell J. Robb

Aggregate 2022, 3, e196

43. Quantifying activation rates of scissile mechanophores and the influence of dispersity

Anna C. Overholts, Molly E. McFadden, and Maxwell J. Robb

Macromolecules 2022, 55, 276–283

42. Harnessing the power of force: Development of mechanophores for molecular release

Brooke A. Versaw, Tian Zeng, Xiaoran Hu, and Maxwell J. Robb

J. Am. Chem. Soc. 2021, 143, 21461–21473

41. 5-Aryloxy substitution enables efficient mechanically triggered release from a synthetically accessible masked 2-furylcarbinol mechanophore

Tian Zeng, Xiaoran Hu, and Maxwell J. Robb

Chem. Commun. 2021, 57, 11173–11176

40. A Modular approach to mechanically gated photoswitching with color-tunable molecular force probes

Ross W. Barber and Maxwell J. Robb

Chem. Sci. 2021, 12, 11703–11709

39. Mechanically triggered release of functionally diverse molecular payloads from masked 2-furylcarbinol derivatives

Xiaoran Hu, Tian Zeng, Corey C. Husic, and Maxwell J. Robb

ACS Cent. Sci. 2021, 7, 1216–1224

38. Comparison of the reactivity of isomeric 2H- and 3H-naphthopyran mechanophores

Skylar K. Osler, Molly E. McFadden, and Maxwell J. Robb

J. Polym. Sci. 2021, 59, 2537–2544

37. Generation of an elusive permanent merocyanine via a unique mechanochemical reaction pathway

Molly E. McFadden and Maxwell J. Robb

J. Am. Chem. Soc. 2021, 143, 7925–7929

36. Validation of the CoGEF method as a predictive tool for polymer mechanochemistry

Isabel M. Klein,‡ Corey C. Husic,‡ Dávid P. Kovács, Nicolas J. Choquette, and Maxwell J. Robb (‡contributed equally)

J. Am. Chem. Soc. 2020, 142, 16364–16381

35. Designing naphthopyran mechanophores with tunable mechanochromic behavior

Brooke A. Versaw, Molly E. McFadden, Corey C. Husic, and Maxwell J. Robb

Chem. Sci. 2020, 11, 4525–4530

34. Mechanically triggered small molecule release from a masked furfuryl carbonate

Xiaoran Hu, Tian Zeng, Corey C. Husic, and Maxwell J. Robb

J. Am. Chem. Soc. 2019, 141, 15018–15023

33. Force-dependent multicolor mechanochromism from a single mechanophore

Molly E. McFadden and Maxwell J. Robb

J. Am. Chem. Soc. 2019, 141, 11388–11392

32. Mechanochemically gated photoswitching: Expanding the scope of polymer mechanochromism

Ross W. Barber, Molly E. McFadden, Xiaoran Hu, and Maxwell J. Robb

Synlett 2019, 30, 1725–1732

31. Mechanochemical regulation of a photochemical reaction

Xiaoran Hu, Molly E. McFadden, Ross W. Barber, and Maxwell J. Robb

J. Am. Chem. Soc. 2018, 140, 14073–14077

Prior to Caltech

30. Spatially Selective and Density-Controlled Activation of Interfacial Mechanophores

Sulkanen, A. R.; Sung, J.; Robb, M. J.; Moore, J. S.; Sottos, N. R.; Liu, G. Y.

J. Am. Chem. Soc. 2019, 141, 4080–4085

29. Mechanical Reactivity of Two Different Spiropyran Mechanophores in Polydimethylsiloxane

Kim, T. A.; Robb, M. J.; Moore, J. S.; White, S. R.; Sottos, N. R.

Macromolecules 2018, 51, 9177–9183

28. Interfacial Mechanophore Activation Using Laser-Induced Stress Waves

Sung, J.; Robb, M. J.; White, S. R.; Moore, J. S.; Sottos, N. R.

J. Am. Chem. Soc. 2018, 140, 5000–5003

27. Polymers with autonomous life-cycle control

Patrick, J. F.; Robb, M. J.; Sottos, N. R.; Moore, J. S.; White, S. R.

Nature 2016, 540, 363–370

26. Regioisomer-specific mechanochromism of naphthopyran in polymeric materials

Robb, M. J.; Kim, T. A.; Halmes, A. J.; White, S. R.; Sottos, N. R.; Moore, J. S.

J. Am. Chem. Soc. 2016, 138, 12328–12331

25. A robust damage-reporting strategy for polymeric materials enabled by aggregation-induced emission

Robb, M. J.; Li, W.; Gergely, R. C. R.; Matthews, C. C.; White, S. R.; Sottos, N. R.; Moore, J. S.

ACS Cent. Sci. 2016, 2, 598–603

24. Poly(ether sulfone)s using a rigid dibenzothiophene dioxide heterocycle

Kortan, A. M.; Cannizzaro, R. J.; Robb, M. J.; Knauss, D. M.

J. Polym. Sci. Part A: Polym. Chem. 2016, 54, 3127–3131

23. Is molecular weight or degree of polymerization a better descriptor of ultrasound-induced mechanochemical transduction?

May, P. A.; Munaretto, N. F.; Hamoy, M. B.; Robb, M. J.; Moore, J. S.

ACS Macro Lett. 2016, 5, 177–180

22. Tethered tertiary amines as solid-state n-type dopants for solution-processable organic semiconductors

Russ, B.; Robb, M. J.; Popere, B. C.; Perry, E. E.; Mai, C.-K.; Fronk, S. L.; Patel, S. N.; Mates, T. E.; Bazan, G. C.; Urban, J. J.; Chabinyc, M. L.; Hawker, C. J.; Segalman, R. A.

Chem. Sci. 2016, 7, 1914–1919

21. Significance of miscibility in multidonor bulk heterojunction solar cells

Hartmeier, B. F.; Brady, M. A.; Treat, N. D.; Robb, M. J.; Mates, T. E.; Hexemer, A.; Wang, C.; Hawker, C. J.; Kramer, E. J.; Chabinyc, M. L.

J. Polym. Sci. Part B: Polym. Phys. 2016, 54, 237–246

20. A retro-Staudinger cycloaddition: Mechanochemical cycloelimination of a β-lactam mechanophore

Robb, M. J.; Moore, J. S.

J. Am. Chem. Soc. 2015, 137, 10946–10949

19. Exploring the synthesis and impact of end-functional poly(3-hexylthiophene)

Handa, N. V.; Serrano, A. V.; Robb, M. J.; Hawker, C. J.​

J. Polym. Sci. Part A: Polym. Chem. 2015, 53, 831–841

18. Modulating the properties of azulene-containing polymers through controlled incorporation of regioisomers

Tsurui, K.; Murai, M.; Ku, S.-Y.; Hawker, C. J.*; Robb, M. J.*

Adv. Funct. Mater. 2014, 24, 7338–7347

17. Synthetic aptamer-polymer hybrid constructs for programmed drug delivery into specific target cells

Oh, S. S.; Lee, B. F.; Leibfarth, F. A.; Eisenstein, M.; Robb, M. J.; Lynd, N. A.; Hawker, C. J.; Soh, H. T.

J. Am. Chem. Soc. 2014, 136, 15010–15015

16. Modulating structure and properties in organic chromophores: influence of azulene as a building block

Murai, M.; Ku, S.-Y.; Treat, N. D.; Robb, M. J.; Chabinyc, M. L.; Hawker, C. J.

Chem. Sci. 2014, 5, 3753–3760

15. One-step synthesis of unsymmetrical N-alkyl-N'-aryl perylene diimides

Robb, M. J.; Newton, B.; Fors, B. P.; Hawker, C. J.

J. Org. Chem. 2014, 79, 6360–6365

14. Power factor enhancement in solution-processed n-type thermoelectrics through molecular design

Russ, B.; Robb, M. J.; Brunetti, F. G.; Miller, P. L.; Patel, S.; Ho, V.; Urban, J. J.; Chabinyc, M. L.; Hawker, C. J.; Segalman, R. A.

Adv. Mater. 2014, 26, 3473–3477

13. 25th Anniversary article: No assembly required: Recent advances in fully conjugated block copolymers

Robb, M. J.; Ku, S.-Y.; Hawker, C. J.

Adv. Mater. 2013, 25, 5686–5700

12. Fabrication of unique chemical patterns and concentration gradients with visible light

Fors, B. P.; Poelma, J. E.; Menyo, M. S.; Robb, M. J.; Spokoyny, D. M.; Kramer, J. W.; Waite, J. H.; Hawker, C. J.

J. Am. Chem. Soc. 2013, 135, 14106–14109

11. A one-step strategy for end-functionalized donor–acceptor conjugated polymers

Robb, M. J.; Montarnal, D.; Eisenmenger, N. D.; Ku, S.-Y.; Chabinyc, M. L.; Hawker, C. J.

Macromolecules 2013, 46, 6431–6438

10. Supramolecular guests in solvent driven block copolymer assembly: from structured nanoparticles to micelles

Klinger, D.; Robb, M. J.; Spruell, J. M.; Lynd, N. A.; Hawker, C. J.; Connal, L. A.

Polym. Chem. 2013, 4, 5038–5042

9. Interpreting the density of states extracted from organic solar cells using transient photocurrent measurements

MacKenzie, R. C. I.; Shuttle, C. G.; Dibb, G. F.; Treat, N.; von Hauff, E.; Robb, M. J.; Hawker, C. J.; Chabinyc, M. L.; Nelson, J.

J. Phys. Chem. C 2013, 117, 12407–12414

8. A renaissance of color: New structures and building blocks for organic electronics

Robb, M. J.; Ku, S.-Y.; Brunetti, F. G.; Hawker, C. J.

J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 1263–1271

7. Mesostructured block copolymer nanoparticles: Versatile templates for hybrid inorganic/organic nanostructures

Connal, L. A.; Lynd, N. A.; Robb, M. J.; See, K. A.; Jang, S. G.; Spruell, J. M.; Hawker, C. J.

Chem. Mater. 2012, 24, 4036–4042

6. A modular strategy for fully conjugated donor–acceptor block copolymers

Ku, S.-Y.; Brady, M. A.; Treat, N. D.; Cochran, J. E.; Robb, M. J.; Kramer, E. J.; Chabinyc, M. L.; Hawker, C. J.

J. Am. Chem. Soc. 2012, 134, 16040–16046

5. Functional block copolymer nanoparticles: Toward the next generation of delivery vehicles

Robb, M. J.; Connal, L. A.; Lee, B. F.; Lynd, N. A.; Hawker, C. J.

Polym. Chem. 2012, 3, 1618–1628

4. De novo design of bioactive protein-resembling nanospheres via dendrimer-templated peptide amphiphile assembly

Lin, B. F.; Marullo, R. S.; Robb, M. J.; Krogstad, D. V.; Antoni, P.; Hawker, C. J.; Campos, L. M.; Tirrell, M. V.

Nano Lett. 2011, 11, 3946–3950

3. Exhaustive glycosylation, PEGylation, and glutathionylation of a [G4]–ene48 dendrimer via photoinduced thiol-ene coupling

Lo Conte, M.; Robb, M. J.; Hed, Y.; Marra, A.; Malkoch, M.; Hawker, C. J.; Dondoni, A.

J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 4468–4475

2. Pushing the limits for CuAAC and thiol-ene reactions: Synthesis of a 6th generation dendrimer in a single day

Antoni, P.; Robb, M. J.; Campos, L.; Montañez, M.; Hult, A.; Malmström, E.; Malkoch, M.; Hawker, C. J.

Macromolecules 2010, 43, 6625–6631

1. Poly(arylene sulfide)s by nucleophilic aromatic substitution polymerization of 2,7-difluorothianthrene

Robb, M. J.; Knauss, D. M

J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 2453–2461

Book Chapters

‘Click’ chemistry in polymer science: CuAAC and thiol–ene coupling for the synthesis and functionalization of macromolecules

Robb, M. J.; Hawker, C. J.

In Synthesis of Polymers: New Structures and Methods; Schlüter, A. D., Hawker, C. J., Sakamoto, J., Eds.; Wiley-VCH: Weinheim, Germany, 2012; Vol. 2, pp 923–971

Patents

Fluorescence detection of mechanical damage

Moore, J. S.; White, S. R.; Sottos, N. R.; Li, W.; Matthews, C. C.; Robb, M. J.

U.S. Patent 10,139,389 issued November 27, 2018

Method for controlled release using mechanical force

Robb, M. J.; Hu, X.; Zeng, T.

U.S. Patent 11,584,752 issued February 21, 2023

Method for multicolor lithography using mechanical force

Robb, M. J.; Overholts, A. C.

U.S. Patent Appl. 18/193,586 filed March 30, 2023

Method for controlling chemical reactions using ultrasound

Robb, M. J.; Shapiro, M. G.; Yao, Y.; McFadden, M. E.

Provisional Patent Appl. CIT-9023-P filed June 13, 2023

Mechanical regulation of photoswitching

Robb, M. J.; Hu, X.

U.S. Patent 11,834,442 issued December 5, 2023

bottom of page