57. Mechanically triggered bright chemiluminescence from polymers by exploiting a synergy between masked 2-furylcarbinol mechanophores and 1,2-dioxetane chemiluminophores
Peng Liu,‡ Yu-Ling Tseng,‡ Liang Ge, Tian Zeng, Doron Shabat, and Maxwell J. Robb (‡contributed equally)
J. Am. Chem. Soc. 2024, 146, 22151–22156
DOI: 10.1021/jacs.4c07592
56. Multimechanophore polymers for mechanically triggered small molecule release with ultrahigh payload capacity
Tian Zeng, Liam A. Ordner, Peng Liu, and Maxwell J. Robb
J. Am. Chem. Soc. 2024, 146, 95–100
DOI: 10.1021/jacs.3c11927
55. Incorporation of a self-immolative spacer enables mechanically triggered dual payload release
Yu-Ling Tseng, Tian Zeng, and Maxwell J. Robb
Chem. Sci. 2024, 15, 1472–1479
DOI: 10.1039/D3SC06359C
54. Remote control of mechanochemical reactions under physiological conditions using biocompatible focused ultrasound
Yuxing Yao,‡ Molly E. McFadden,‡ Stella M. Luo, Ross W. Barber, Elin Kang, Avinoam Bar-Zion, Cameron A. B. Smith, Zhiyang Jin, Mark Legendre, Bill Ling, Dina Malounda, Andrea Torres, Tiba Hamza, Chelsea E. R. Edwards, Mikhail G. Shapiro, and Maxwell J. Robb (‡contributed equally)
Proc. Natl. Acad. Sci. U.S.A. 2023, 120, e2309822120
53. Anomalous photochromism and mechanochromism of a linear naphthopyran enabled by a polarizing dialkylamine substituent
Yan Sun, Molly E. McFadden, Skylar K. Osler, Ross W. Barber, and Maxwell J. Robb
Chem. Sci. 2023, 14, 10494–10499
DOI: 10.1039/d3sc03790h
52. Naphthopyran molecular switches and their emergent mechanochemical reactivity
Molly E. McFadden, Ross W. Barber, Anna C. Overholts, and Maxwell J. Robb
Chem. Sci. 2023, 14, 10041–10067
DOI: 10.1039/D3SC03729K
51. Mechanochemical reactivity of a multimodal 2H-bis-naphthopyran mechanophore
Skylar K. Osler, Molly E. McFadden, Tian Zeng, and Maxwell J. Robb
Polym. Chem. 2023, 14, 2717–2723
DOI: 10.1039/d3py00344b
50. Validation of an accurate and expedient initial rates method for characterizing mechanophore reactivity
Molly E. McFadden, Anna C. Overholts, Skylar K. Osler, and Maxwell J. Robb
ACS Macro Lett. 2023, 12, 440–445
49. Mechanically gated formation of donor–acceptor Stenhouse adducts enabling mechanochemical multicolour soft lithography
Anna C. Overholts, Wendy Granados Razo, and Maxwell J. Robb
Nat. Chem. 2023, 15, 332–338
48. Competitive activation experiments reveal significantly different mechanochemical reactivity of furan–maleimide and anthracene–maleimide mechanophores
Stella M. Luo, Ross W. Barber, Anna C. Overholts, and Maxwell J. Robb
ACS Polym. Au 2023, 3, 202–208
47. Mechanical force enables an anomalous dual ring-opening reaction of naphthodipyran
Molly E. McFadden, Skylar K. Osler, Yan Sun, and Maxwell J. Robb
J. Am. Chem. Soc. 2022, 144, 22391–22396
DOI: 10.1021/jacs.2c08817
46. Incorporation of a tethered alcohol enables efficient mechanically triggered release in aprotic environments
Corey C. Husic, Xiaoran Hu, and Maxwell J. Robb
ACS Macro Lett. 2022, 11, 948–953
45. Examining the impact of relative mechanophore activity on the selectivity of ultrasound-induced mechanochemical chain scission
Anna C. Overholts and Maxwell J. Robb
ACS Macro Lett. 2022, 11, 733–738
44. A Mechanochemical two for one: Mechanical activation of norborn-2-en-7-one releases carbon monoxide and switches on aggregation-induced emission (invited highlight)
Ross W. Barber and Maxwell J. Robb
Aggregate 2022, 3, e196
DOI: 10.1002/agt2.196
43. Quantifying activation rates of scissile mechanophores and the influence of dispersity
Anna C. Overholts, Molly E. McFadden, and Maxwell J. Robb
Macromolecules 2022, 55, 276–283
42. Harnessing the power of force: Development of mechanophores for molecular release
Brooke A. Versaw, Tian Zeng, Xiaoran Hu, and Maxwell J. Robb
J. Am. Chem. Soc. 2021, 143, 21461–21473
DOI: 10.1021/jacs.1c11868
41. 5-Aryloxy substitution enables efficient mechanically triggered release from a synthetically accessible masked 2-furylcarbinol mechanophore
Tian Zeng, Xiaoran Hu, and Maxwell J. Robb
Chem. Commun. 2021, 57, 11173–11176
DOI: 10.1039/D1CC04886D
40. A Modular approach to mechanically gated photoswitching with color-tunable molecular force probes
Ross W. Barber and Maxwell J. Robb
Chem. Sci. 2021, 12, 11703–11709
DOI: 10.1039/D1SC02890A
39. Mechanically triggered release of functionally diverse molecular payloads from masked 2-furylcarbinol derivatives
Xiaoran Hu, Tian Zeng, Corey C. Husic, and Maxwell J. Robb
ACS Cent. Sci. 2021, 7, 1216–1224
38. Comparison of the reactivity of isomeric 2H- and 3H-naphthopyran mechanophores
Skylar K. Osler, Molly E. McFadden, and Maxwell J. Robb
J. Polym. Sci. 2021, 59, 2537–2544
DOI: 10.1002/pol.20210417
37. Generation of an elusive permanent merocyanine via a unique mechanochemical reaction pathway
Molly E. McFadden and Maxwell J. Robb
J. Am. Chem. Soc. 2021, 143, 7925–7929
DOI: 10.1021/jacs.1c03865
36. Validation of the CoGEF method as a predictive tool for polymer mechanochemistry
Isabel M. Klein,‡ Corey C. Husic,‡ Dávid P. Kovács, Nicolas J. Choquette, and Maxwell J. Robb (‡contributed equally)
J. Am. Chem. Soc. 2020, 142, 16364–16381
DOI: 10.1021/jacs.0c06868
35. Designing naphthopyran mechanophores with tunable mechanochromic behavior
Brooke A. Versaw, Molly E. McFadden, Corey C. Husic, and Maxwell J. Robb
Chem. Sci. 2020, 11, 4525–4530
DOI: 10.1039/D0SC01359E
34. Mechanically triggered small molecule release from a masked furfuryl carbonate
Xiaoran Hu, Tian Zeng, Corey C. Husic, and Maxwell J. Robb
J. Am. Chem. Soc. 2019, 141, 15018–15023
DOI: 10.1021/jacs.9b08663
33. Force-dependent multicolor mechanochromism from a single mechanophore
Molly E. McFadden and Maxwell J. Robb
J. Am. Chem. Soc. 2019, 141, 11388–11392
DOI: 10.1021/jacs.9b05280
32. Mechanochemically gated photoswitching: Expanding the scope of polymer mechanochromism
Ross W. Barber, Molly E. McFadden, Xiaoran Hu, and Maxwell J. Robb
Synlett 2019, 30, 1725–1732
31. Mechanochemical regulation of a photochemical reaction
Xiaoran Hu, Molly E. McFadden, Ross W. Barber, and Maxwell J. Robb
J. Am. Chem. Soc. 2018, 140, 14073–14077
DOI: 10.1021/jacs.8b09628
Prior to Caltech
30. Spatially Selective and Density-Controlled Activation of Interfacial Mechanophores
Sulkanen, A. R.; Sung, J.; Robb, M. J.; Moore, J. S.; Sottos, N. R.; Liu, G. Y.
J. Am. Chem. Soc. 2019, 141, 4080–4085
DOI: 10.1021/jacs.8b10257
29. Mechanical Reactivity of Two Different Spiropyran Mechanophores in Polydimethylsiloxane
Kim, T. A.; Robb, M. J.; Moore, J. S.; White, S. R.; Sottos, N. R.
Macromolecules 2018, 51, 9177–9183
28. Interfacial Mechanophore Activation Using Laser-Induced Stress Waves
Sung, J.; Robb, M. J.; White, S. R.; Moore, J. S.; Sottos, N. R.
J. Am. Chem. Soc. 2018, 140, 5000–5003
DOI: 10.1021/jacs.8b01427
27. Polymers with autonomous life-cycle control
Patrick, J. F.; Robb, M. J.; Sottos, N. R.; Moore, J. S.; White, S. R.
Nature 2016, 540, 363–370
DOI: 10.1038/nature21002
26. Regioisomer-specific mechanochromism of naphthopyran in polymeric materials
Robb, M. J.; Kim, T. A.; Halmes, A. J.; White, S. R.; Sottos, N. R.; Moore, J. S.
J. Am. Chem. Soc. 2016, 138, 12328–12331
DOI: 10.1021/jacs.6b07610
25. A robust damage-reporting strategy for polymeric materials enabled by aggregation-induced emission
Robb, M. J.; Li, W.; Gergely, R. C. R.; Matthews, C. C.; White, S. R.; Sottos, N. R.; Moore, J. S.
ACS Cent. Sci. 2016, 2, 598–603
24. Poly(ether sulfone)s using a rigid dibenzothiophene dioxide heterocycle
Kortan, A. M.; Cannizzaro, R. J.; Robb, M. J.; Knauss, D. M.
J. Polym. Sci. Part A: Polym. Chem. 2016, 54, 3127–3131
DOI: 10.1002/pola.28197
23. Is molecular weight or degree of polymerization a better descriptor of ultrasound-induced mechanochemical transduction?
May, P. A.; Munaretto, N. F.; Hamoy, M. B.; Robb, M. J.; Moore, J. S.
ACS Macro Lett. 2016, 5, 177–180
22. Tethered tertiary amines as solid-state n-type dopants for solution-processable organic semiconductors
Russ, B.; Robb, M. J.; Popere, B. C.; Perry, E. E.; Mai, C.-K.; Fronk, S. L.; Patel, S. N.; Mates, T. E.; Bazan, G. C.; Urban, J. J.; Chabinyc, M. L.; Hawker, C. J.; Segalman, R. A.
Chem. Sci. 2016, 7, 1914–1919
DOI: 10.1039/C5SC04217H
21. Significance of miscibility in multidonor bulk heterojunction solar cells
Hartmeier, B. F.; Brady, M. A.; Treat, N. D.; Robb, M. J.; Mates, T. E.; Hexemer, A.; Wang, C.; Hawker, C. J.; Kramer, E. J.; Chabinyc, M. L.
J. Polym. Sci. Part B: Polym. Phys. 2016, 54, 237–246
DOI: 10.1002/polb.23907
20. A retro-Staudinger cycloaddition: Mechanochemical cycloelimination of a β-lactam mechanophore
Robb, M. J.; Moore, J. S.
J. Am. Chem. Soc. 2015, 137, 10946–10949
DOI: 10.1021/jacs.5b07345
19. Exploring the synthesis and impact of end-functional poly(3-hexylthiophene)
Handa, N. V.; Serrano, A. V.; Robb, M. J.; Hawker, C. J.
J. Polym. Sci. Part A: Polym. Chem. 2015, 53, 831–841
DOI: 10.1002/pola.27522
18. Modulating the properties of azulene-containing polymers through controlled incorporation of regioisomers
Tsurui, K.; Murai, M.; Ku, S.-Y.; Hawker, C. J.*; Robb, M. J.*
Adv. Funct. Mater. 2014, 24, 7338–7347
17. Synthetic aptamer-polymer hybrid constructs for programmed drug delivery into specific target cells
Oh, S. S.; Lee, B. F.; Leibfarth, F. A.; Eisenstein, M.; Robb, M. J.; Lynd, N. A.; Hawker, C. J.; Soh, H. T.
J. Am. Chem. Soc. 2014, 136, 15010–15015
DOI: 10.1021/ja5079464
16. Modulating structure and properties in organic chromophores: influence of azulene as a building block
Murai, M.; Ku, S.-Y.; Treat, N. D.; Robb, M. J.; Chabinyc, M. L.; Hawker, C. J.
Chem. Sci. 2014, 5, 3753–3760
DOI: 10.1039/C4SC01623H
15. One-step synthesis of unsymmetrical N-alkyl-N'-aryl perylene diimides
Robb, M. J.; Newton, B.; Fors, B. P.; Hawker, C. J.
J. Org. Chem. 2014, 79, 6360–6365
DOI: 10.1021/jo500945k
14. Power factor enhancement in solution-processed n-type thermoelectrics through molecular design
Russ, B.; Robb, M. J.; Brunetti, F. G.; Miller, P. L.; Patel, S.; Ho, V.; Urban, J. J.; Chabinyc, M. L.; Hawker, C. J.; Segalman, R. A.
Adv. Mater. 2014, 26, 3473–3477
13. 25th Anniversary article: No assembly required: Recent advances in fully conjugated block copolymers
Robb, M. J.; Ku, S.-Y.; Hawker, C. J.
Adv. Mater. 2013, 25, 5686–5700
12. Fabrication of unique chemical patterns and concentration gradients with visible light
Fors, B. P.; Poelma, J. E.; Menyo, M. S.; Robb, M. J.; Spokoyny, D. M.; Kramer, J. W.; Waite, J. H.; Hawker, C. J.
J. Am. Chem. Soc. 2013, 135, 14106–14109
DOI: 10.1021/ja408467b
11. A one-step strategy for end-functionalized donor–acceptor conjugated polymers
Robb, M. J.; Montarnal, D.; Eisenmenger, N. D.; Ku, S.-Y.; Chabinyc, M. L.; Hawker, C. J.
Macromolecules 2013, 46, 6431–6438
DOI: 10.1021/ma401255d
10. Supramolecular guests in solvent driven block copolymer assembly: from structured nanoparticles to micelles
Klinger, D.; Robb, M. J.; Spruell, J. M.; Lynd, N. A.; Hawker, C. J.; Connal, L. A.
Polym. Chem. 2013, 4, 5038–5042
DOI: 10.1039/C3PY00750B
9. Interpreting the density of states extracted from organic solar cells using transient photocurrent measurements
MacKenzie, R. C. I.; Shuttle, C. G.; Dibb, G. F.; Treat, N.; von Hauff, E.; Robb, M. J.; Hawker, C. J.; Chabinyc, M. L.; Nelson, J.
J. Phys. Chem. C 2013, 117, 12407–12414
DOI: 10.1021/jp4010828
8. A renaissance of color: New structures and building blocks for organic electronics
Robb, M. J.; Ku, S.-Y.; Brunetti, F. G.; Hawker, C. J.
J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 1263–1271
DOI: 10.1002/pola.26531
7. Mesostructured block copolymer nanoparticles: Versatile templates for hybrid inorganic/organic nanostructures
Connal, L. A.; Lynd, N. A.; Robb, M. J.; See, K. A.; Jang, S. G.; Spruell, J. M.; Hawker, C. J.
Chem. Mater. 2012, 24, 4036–4042
DOI: 10.1021/cm3011524
6. A modular strategy for fully conjugated donor–acceptor block copolymers
Ku, S.-Y.; Brady, M. A.; Treat, N. D.; Cochran, J. E.; Robb, M. J.; Kramer, E. J.; Chabinyc, M. L.; Hawker, C. J.
J. Am. Chem. Soc. 2012, 134, 16040–16046
DOI: 10.1021/ja307431k
5. Functional block copolymer nanoparticles: Toward the next generation of delivery vehicles
Robb, M. J.; Connal, L. A.; Lee, B. F.; Lynd, N. A.; Hawker, C. J.
Polym. Chem. 2012, 3, 1618–1628
DOI: 10.1039/C2PY20131C
4. De novo design of bioactive protein-resembling nanospheres via dendrimer-templated peptide amphiphile assembly
Lin, B. F.; Marullo, R. S.; Robb, M. J.; Krogstad, D. V.; Antoni, P.; Hawker, C. J.; Campos, L. M.; Tirrell, M. V.
Nano Lett. 2011, 11, 3946–3950
DOI: 10.1021/nl202220q
3. Exhaustive glycosylation, PEGylation, and glutathionylation of a [G4]–ene48 dendrimer via photoinduced thiol-ene coupling
Lo Conte, M.; Robb, M. J.; Hed, Y.; Marra, A.; Malkoch, M.; Hawker, C. J.; Dondoni, A.
J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 4468–4475
DOI: 10.1002/pola.24888
2. Pushing the limits for CuAAC and thiol-ene reactions: Synthesis of a 6th generation dendrimer in a single day
Antoni, P.; Robb, M. J.; Campos, L.; Montañez, M.; Hult, A.; Malmström, E.; Malkoch, M.; Hawker, C. J.
Macromolecules 2010, 43, 6625–6631
DOI: 10.1021/ma101242u
1. Poly(arylene sulfide)s by nucleophilic aromatic substitution polymerization of 2,7-difluorothianthrene
Robb, M. J.; Knauss, D. M
J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 2453–2461
DOI: 10.1002/pola.23341
Book Chapters
‘Click’ chemistry in polymer science: CuAAC and thiol–ene coupling for the synthesis and functionalization of macromolecules
Robb, M. J.; Hawker, C. J.
In Synthesis of Polymers: New Structures and Methods; Schlüter, A. D., Hawker, C. J., Sakamoto, J., Eds.; Wiley-VCH: Weinheim, Germany, 2012; Vol. 2, pp 923–971
ISBN: 978-3-527-32757-7
Patents
Fluorescence detection of mechanical damage
Moore, J. S.; White, S. R.; Sottos, N. R.; Li, W.; Matthews, C. C.; Robb, M. J.
U.S. Patent 10,139,389 issued November 27, 2018
Method for controlled release using mechanical force
Robb, M. J.; Hu, X.; Zeng, T.
U.S. Patent 11,584,752 issued February 21, 2023
Method for multicolor lithography using mechanical force
Robb, M. J.; Overholts, A. C.
U.S. Patent Appl. 18/193,586 filed March 30, 2023
Method for controlling chemical reactions using ultrasound
Robb, M. J.; Shapiro, M. G.; Yao, Y.; McFadden, M. E.
Provisional Patent Appl. CIT-9023-P filed June 13, 2023
Mechanical regulation of photoswitching
Robb, M. J.; Hu, X.
U.S. Patent 11,834,442 issued December 5, 2023